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Abstract 
 
 Internet worms have been a problem since Robert Morris introduced the Morris worm in 1988. 
Since then we have seen the destructive power of which worms are capable. Code Red I and II, and 
Nimda are just a few examples of how worms exploit vulnerabilities not only in original applications but 
also those left behind by other worms. Recently, we have seen the Slammer worm spread at an alarming 
rate. Had the worm carried a more malicious payload, the amount of damage it could have caused is 
catastrophic. For these reasons, it is important to look into different methods to prevent worms from 
spreading. Furthermore, preventative measures need to be automated to keep up with the speed and 
complexity that flash and Warhol worms maintain. 
 
 Once a worm has been detected other machines on the internet need to be made aware of its 
presence so that they too will not be exploited. Theoretically, internet packets containing worm code can 
be blocked based on many things such as ports targeted, system commands executed, source or 
destination IP addresses, etc. However, it is not always reasonable (or possible) to block traffic on a given 
service/port or source IP. Furthermore, scanning each packet for machine code that exploits buffer 
overflows can be expensive. This paper focuses on the idea of using a system called WormDePaCk, 
(Worm Detection through Packet Checksums), overlapping checksums of packet information as profiles 
(or signatures, used interchangeably) for different worm attacks. These profiles will be broadcast to 
machines on the network and will be used by these machines to compare against checksums calculated for 
incoming packets. Packets will then be dropped based on the probability that they contain worm code. 
 

1. Introduction (to worms and threats) 
 
 The digital age we are living in has enabled us to connect to resources that were once difficult (if 
not impossible) to get. For instance with a few clicks of the mouse, we can check the current weather 
forecast for Paris, see Mount Fuji live on a web cam, or buy rare movie memorabilia from an auction site 
halfway across the world. In many ways the internet has become an essential part of our lives; its 
existence has allowed us to use our time more efficiently. 
 
 What if the internet was unavailable for a few minutes? We would be inconvenienced a little but 
we could move on. However what if the internet was gone for a few hours? Or days? Imagine the chaos 
that event would ensue. ATMs could not dispense cash to people, businesses would lose millions in 
revenue, university research would grind to a halt, and this is only the tip of the iceberg. 
  

All of this is possible if an internet worm is unleashed that causes so much damage that the 
network is rendered useless for a brief moment of time. The first such worm attack* occurred in 1988 
*The first worm actually came from Xerox PARC in 1978. It was a program that search for idle computers on the 
network to install and run a program that analyzed network traffic patterns. 



 

when the Morris Worm disabled the internet for five days [18]. Similar worms, Code Red; Nimda; and 
more recently, Slammer and Fizzer, have not entirely caused the internet to be offline but instead have 
caused people to experience a slowdown in the connection or have portions to be completely unreachable. 
This may only be the beginning of attacks to come. So called flash worms and Warhol worms can be 
capable of spreading across the internet in a matter of minutes, infecting hosts along the way and 
consuming massive amounts of network bandwidth [20]. Table 1 below shows the number and percentage 
of machines infected by different worms, as of May 2002, organized by continent. 
 

Countries  
Worm.Klez.H 

(since April 17, 
2002) 

Nimda-AO 
(since Sept 

22, 2001)

Code Red 
(since Aug 

6, 2001)

VBS_Love 
Lttr.Be (since 
Aug 28, 2000)

Melissa. A 
(since Dec 6, 

1999 
Total % 

North America 90,504 304,666 38 36,816 15,742 447,766 40.32

Europe 44,018 266,955 11 6,465 4,527 321,976 28.99

Asia 45,967 61,981 48 4,485 4,423 116,904 10.52

South America 14,152 1,226 0 539 3,910 19,827 1.79

Africa 7,099 110,592 0 1,666 1,791 121,148 10.91

Australia/New 
Zealand 6,435 71,420 3 3,955 284 82,097 7.39

Unknown 253 393 1 185 74 906 0.08

Total  208,428 817,233 101 54,111 30,751 1,110,624 100

Table 1: Source: Trend Micro, Incorporated [15] 
 

2. Anatomy of Worms 
 
Portions of this section from [20]. 
 
 Computer worms are defined to be programs that self-propagate across the Internet by exploiting 
security flaws in widely used services.  A worm may or may not have a malicious payload.  Typically, the 
size of the worm may affect how quickly it can spread, thus a large payload can limit a worm’s 
propagation.  Worms with or without malicious payloads are dangerous for several reasons.  First, one a 
large number of hosts have been subverted by a worm, they can be used to launch huge distributed denial 
of service attacks which can render systems and networks useless.  Worms, like FIZZER, to be discussed 
shortly, can also be used to steal or corrupt immense amounts of sensitive data.  Furthermore, worms, like 
Slammer, which subvert most of their victims in a matter of minutes, can be used to disrupt the network 
and reek havoc in general. 
   
 Before continuing further, several recent and powerful worms should be discussed. 
Code Red I was a worm that was first seen on July 13th, 2001. Ryan Permeh and Marc Maiffret of Eeye 
Digital Security disassembled the worm to see how it works. They discovered that the worm spread by 
exploiting the Microsoft IIS web servers using the .ida vulnerability. Once this type of server was infected, 
the worm launched 99 threads which generated random IP addresses of other hosts and it attempted to 
compromise them using the same vulnerability. On some of the infected machines a 100th thread was used 
to simply deface the web server. 
  
 The first version of Code Red I had a major flaw. The random number generator used to 
determine which machines were to be targeted by a particular thread of the worm used the same seed for 
all instantiations of the worm. In other words, all copies of the Code Red worm had the same set of target 
IP addresses. For example if thread number 32 used x as the seed for the random number generator on 



 

machine Y then thread number 32 on machine Z also used x as the seed for its random number generator. 
So, in fact, there were 100 different sequences of randomly generated IP addressed that were explored by 
the worm. This was a significant limitation on its possible spread. 
  
 On July 19th a second version of Code Red I was released which no longer had the random 
number seeding problem. Also, this version no longer attempted to deface the webserver on the 
compromised host. Instead, there was a payload added that caused a DDOS on www.whitehouse.gov. 
This version spread rapidly until almost all Microsoft IIS servers were compromised. It then stopped 
suddenly at midnight UTC due to an internal constraint that caused it to terminate. The worm then 
reactivated on August 1st, then shut down after a few days, then reactivated, etc. According to Lawrence 
Berkeley National Labs, Each time Code Red I v2 reactivated it grew in strength however; this feature of 
the worm is still not understood. 
  
 To estimate the number of infected machines at a given time, the “Random Constraint Spread 
Model” (RCS) is used. This model assumes that the worm in question has a good random number 
generator and a good seed value. It also assumes that the targets are chosen randomly and that once a 
target has been compromised it cannot be compromised again. For this model let: 
 
 
 N = total # of vulnerable servers which can be potentially compromised on net 
  
 K = initial compromise rate, i.e. number of vulnerable hosts that an infected host can find  and 
compromise per hour at the start of the incident.  
  
 NOTE: K is a global constant and does not depend on processor speed, network  
 connection, or location of the infected machine. 
  
 a = proportion of vulnerable machines which have been compromised 
  
 t = the time in hours. 
 
To set up a differential equation note that at a particular time t a proportion of the machines has been 
compromised. The number of machines that will be compromised in a period of time dt is equivalent to 
Nda.  

dtaKNaNda )1()( −=  
 

Thus, the number of machines to be compromised is dependent on the number of machines currently 
compromised multiplied by the number of machines each of those machines can compromise per unit 
time. Solving the equation gives us the logistic equation known to track the growth of epidemics in finite 
systems: 
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Note that as t approaches infinity, the limit of a goes to one. This makes sense because after an infinite 
amount of time one would expect that the proportion of all vulnerable machines that are infected reaches 
100%.  Also, when t is small, a grows exponentially. This represents the exponential growth experienced 
when a worm is spreading during its initial infection phase.   
  
 Figure 1 below illustrates an expected growth for Code Red I v2 compared to its actual spread 
rate for the first day of infection. The actual growth of a worm can be approximated by counting the 



 

number of unique machines that scan a potential target in order to attempt infection.  Although it turned 
itself off at midnight UTC, some machines with inaccurate clocks kept it alive.  At its reawakening on 
August first, 60% of the vulnerable systems had been patched within the 11 days that it had laid dormant. 
 

  
Figure 1: Hourly probe rate of Code Red I on July 21, 2001 [20] 
 
 
 For Code Red I v2 we see that for K=1.8 infections per hour and T=11.9 the logistic equation 
maps almost perfectly to the observed number of scans targeted to LBNL.  Note that he incoming scan 
rate that a site sees is proportional to the total number of compromised servers but it is not representative 
of the actual amount of infected machines. The true number of infected hosts is more than that observed 
because it takes time for all infected machines to target a particular machine. 
 
 Shortly after Code Red I was released, Code Red II was introduced onto the Internet on August 
4th 2001. Despite its name it had nothing to do with Code Red I and unlike the first Code Red, Code Red 
II was designed to terminate on October 1st. Code Red II exploited the same buffer overflow vulnerability 
in Microsoft’s IIS web server. Unlike Code Red I, this worm had a payload that attempted to install a root 
backdoor on the victim machine. However, the worm was only successful when IIS was run on a 
Windows 2000 platform but on Windows NT it simply caused a system crash.  
  
 Code Red II had a much smarter propagation tactic. It used a localized attack technique.  
Specifically, the worm was more likely to attack machines that were physically close to it. To do so, it 
chose the next IP to scan using the following probabilities:  
  
  Assume current infected host IP is A.B.C.D 
  3/8: random IP from within the current machine’s B address space 
  1/2: random IP from current machines A address space. 
  1/8: random IP from entire internet. 
 
This technique allowed the worm to infect clusters of machines at a time and at a much quicker rate since 
machines with similar IP’s are usually closer together topologically due to common ISPs etc. This also 
allowed the worm to spread quickly into private networks once it got passed the initial firewall. 
  



 

 The Nimda worm was also introduced around the same time. It was first encountered on 
September 18th, 2001. It spread rapidly and managed to maintain itself on the Internet for months.  What 
made Nimda powerful was its ability to spread behind firewalls and also its many forms of propagation. 
Specifically, Nimda used five methods to spread itself: 
 

1) Infecting web servers from infected client machines via active probing of MS IIS vulnerability. 
2) Bulk emailing itself as an attachment based on email addresses gotten from the infected machine. 
3) Copying itself across network shares. 
4) Adding exploit code to web pages on compromised servers thus spreading to users who browse 

the pages 
5) Scanning backdoors left by Code Red II and “Sadmind” worms. 

 
These five methods of propagation enabled Nimda to spread so quickly that at one point in time it 
attempted 140 HTTP connections per second with LBNL; and in just 30 minutes after release it had a 
steady state of 100 HTTP connections per second. It was also able to cross firewalls through email since 
most firewalls rely on web servers to remove pathogens. Like Code Red I, the full functionality of Nimda 
is still not known. 
  
 Most recently, the Fizzer worm was discovered in May of 2003. Fizzer is an arbitrary-protocol 
worm which uses the KaZaA peer-to-peer network to self-propagate. There have been mixed opinions on 
how serious of a threat Fizzer actually is. On the one hand, the worm spreads more like a virus than a 
worm because of the fact that it needs user interaction to execute, thus, making its propagation very slow. 
On the other hand, other security analysts have claimed that it is a severe threat because of its extremely 
malicious payload. 
 
 Specifically, Fizzer arrives at target machines as an executable and creates copies of itself under 
arbitrary names in the file-sharing folder. Thus, other users on the network can download the worm and 
run it. Fizzer also spreads through Microsoft Outlook by scanning the addresses in the victim’s address 
book and sends infected messages to the recipients. It also attacks random email addresses at common 
mail systems such as Hotmail and Yahoo.   
  
 The Fizzer worm contains a dangerous payload which performs a myriad of harmful covert 
functions. First, the worm installs a key logging program which records all keystrokes to a log file. It can 
then transmit this information to the author of the program through a backdoor utility which allows users 
to control the machine over IRC channels. Also, the worm frequently checks a Geocities website which 
contains revised versions of executable modules and performs a self update. In addition, the worm 
attempts to avoid detection by trying to shut down common anti-virus programs on the victim machine 
[13].  
  
 F-Secure, on the other hand, has labeled Fizzer as a virus rather than a worm. This is probably 
due to the fact that by definition a worm can propagate independent of any human interaction and Fizzer 
requires users to open an executable file before it can spread. F-Secure also adds that among the above 
mentioned threats, Fizzer contains a Denial of Service attack and an AOL backdoor which creates a bot 
that can be used to control the victim machine [5].  Fizzer can be removed from an infected machine and 
stopping propagation is simply a matter of not opening the infected files. However, Fizzer illustrates a 
low level of polymorphism by changing its executables, its file names, title messages in emails, etc. 
Fizzer also illustrates the potential power of internet worms. 
  
 This paper only covers a few of the most recent worms. As the “good guys”, it is more important 
to know what factors make a worm propagate efficiently and quickly in order to create mechanisms to 
stop them. In general, the goal of a worm author is to create a worm that can spread so quickly that human 
intervention cannot stop it from completing its tasks. There are several methods to help speed up the 



 

spreading of the worm. These include hit list scanning, permutation scanning, creating topologically 
aware worms, and internet scale hit-lists.   
 
 It is the scanning portion of the worm that can bottleneck its growth. Scanning should be very fast 
and should be capable of utilizing the entire available network bandwidth. A TCP SYN packet is only 
40bytes and an exploit can be only a few hundred bytes, thus with modern day communication 
capabilities the number of scans per-second can easily reach 100. Also, worm authors need to spend a lot 
of time researching the vulnerabilities that they are trying to exploit. If the vulnerability is not widespread 
then scanning will only yield a small number of targets which leads to a small K value in the logistic 
equation. So, to be successful, the author must spend time finding vulnerabilities that will lead to a fast 
spread of the worm. 
 
 After launch onto a network it takes a while for a worm’s spread rate to get up to speed.  This is 
because the target address space that the worm must deal with is large and since there is only one copy of 
the worm on the network, it must attempt to scan all of these addresses by itself in order to find a 
vulnerable host. Even though a worm spreads exponentially at first, the time it takes to infect the first 
10,000 hosts dominates the infection time of the entire worm. Hit list scanning is a divide and conquer 
method that remedies this problem. Hit list scanning requires the author to first find ten to fifty thousand 
potential vulnerable targets ahead of time and include them in a “hit list”. The parent worm is given this 
hit list and attempts each target sequentially.  Once a target has been found and successfully infected, the 
hit list is then split between the original parent and the new child worm on the compromised system. Even 
if the hit list starts as a large overhead payload, it quickly reduces itself to a negligible size since it is 
divided in half each time a new host is infected. Furthermore, hit lists do not have to be perfect; not all 
machines on the list need to be vulnerable machines at the time of launch. The hit list simply increases the 
probability of finding a vulnerable machine during the initial phases of a scan.  
 
 There are several methods to obtain hit lists. Even if a worm author performed a port scan on the 
entire internet, the odds that he/she raises suspicion are very small. However, if the author wants 
assurance that he/she remains hidden, a stealth scan is the solution. A stealth scan is a random port scan 
over a period of a few months. Thus, spreading the port scans out over a period of time makes the 
author’s activity a little less suspicious. One problem with stealth scans is that once the worm is ready to 
be released some of the information on the hit list will be out of date due to hosts performing system 
updates and vulnerability patches. 
  
 Distributed scanning is a data collection method which is similar to a distributed denial of service 
attack. To perform a distributed scan an attacker uses a few thousand already compromised machines as 
“zombie” machines to perform the scans and report the information.  The information from the zombie 
machines is then coalesced into one large hit list. Other methods of determining the location of vulnerable 
machines include DNS searches, spiders or web crawling techniques, and public surveys on vulnerable 
applications. Finally, one of the most effective methods of finding vulnerable hosts is to simply listen for 
information on the network.  For example, Code Red I gave away over 300,000 potential targets because 
any machine that performed a scan for the vulnerability must itself have already been compromised 
meaning it too suffers from the IIS vulnerability. So, in order to determine which machines should be 
targeted one simply needs to log the IP addresses of the machines performing the scans. 
 
 Once the hit list phase of the worm infection terminates, the worm continues to spread using 
random scanning. However, scanning random IP addresses is not very efficient thus permutation scanning 
can be used. The motivation behind permutation scanning is that random scanning can be inefficient 
because many addresses can be scanned more than once. Permutation scanning assumes that a worm can 
detect whether or not a target has already been scanned and if so move on to scanning a new target. In a 
permutation scan all worms share the same random permutation of IP address space to attack. This 
permutation is created before the worm is launched. 



 

 
 Once the hit list phase spreads the worm, each spawned worm starts scanning according to a 
randomly assigned location in the permutation scan. It sequentially scans the locations in its section of the 
address space and when it sees that a machine is already infected, it then chooses another random point in 
the permuted list and starts from there. A partitioned permutation scan is a variation of the standard 
permutation scan in which each version of the worm has its own unique initial range on the permuted list 
to cover. Once it is done covering that range it then switches over to a regular permutation scan and 
chooses a new random place in the list to start scanning. 
 
 The permutation scan technique has one small weakness which slows it down. If a machine 
responds to a scan as if it has already been scanned then it protects n machines which follow it in the 
permuted list. This is because once a worm sees that the machine is infected it jumps to a new address to 
scan. The n machines are protected for a short period of time but can be attacked later when a strain of the 
worm jumps to their particular location in the list. This problem can be remedied by the attacker if the 
condition to jump to a random location is dependent on more than one encounter of a previously infected 
host. Combining permutation scanning and hit lists creates Warhol worms which are capable of infecting 
all of their potential targets within 15 minutes to an hour. By the time the entire network of vulnerable 
machines is compromised only a few worm strains remain active. 
  
 Topological scanning is an alternative to hit list scanning. This method uses information found on 
the already compromised host to determine who the next targets will be. Email worms are examples of 
topological scanning worms since they get their targets from the addresses in the user’s emails. These 
worms sometimes need outside human intervention to spread and are occasionally classified as viruses.  
 

Another variant to hit-list worms are known as flash worms. These worms would be able to infect 
a majority of susceptible machines in seconds. Rather than attempting to blindly scan the internet for 
vulnerable machines, flash worms attack addresses on a predetermined list. The first worm divides the list 
in n blocks, attempt to infect the first machine of each block, and then hand the list to a child worm to 
infect further. An optimized worm would begin to attack machines on the list as the rest of the list is 
being downloaded. A variation on this method would be to store the list on a high-bandwidth network 
server and give child worms the address to download its subset list, rather than sending it. 
 
 The spread rate for flash worms would be limited by one of two factors. First, worm code tends to 
be small (Code Red I was about 4KB in size, Slammer was 376 bytes), so the list would be significantly 
larger than the worm. So it propagation time would be constrained by the bandwidth of the network; in 
particular, the time it would take to transmit the list to child worms. A second limiting factor is the 
latency to further infect machines as the levels of child worms increases. With the possibility for 
exponential growth, the bandwidth again may limit a worm’s growth. 
 

Stealth worms follow the notion that “easy does it.” Instead of infecting millions of computers in 
minutes (or seconds), stealth worms attempt to spread as slowly as possible. These worms are difficult to 
detect because they do not trigger alarms for unusual network communication patterns. One example is a 
worm that has attacks a pair of exploits, Es (exploit on a web server) and Ec (exploit on a web client, or 
browser). Suppose the attacker plants the exploit on the server. As people browse the webpage the 
attacker checks to see if the user’s browser is vulnerable to Ec. If so, the attacker infects the browser and 
sends Ec and Es. When the user visits another website, the Es exploit looks for vulnerable servers to send 
Es and Ec. 

 
A second type of stealth worms are typically found in P2P networks, such as KaZaA or Grokster. 

These worms attach themselves to files being transferred and so piggyback to other machines for possible 
infection or use them as a launching pad for a future attack. Since the worms would be small in size, the 
user would not be able to distinguish between a 4.1MB music file and a 4.13 infected music file. The file 



 

size discrepancy is less evident with larger files (like movies). Considering that there have been over 
230,309,616 downloads of the program, making it the most downloaded program in history [11], there are 
many machines sharing gigabytes of files for stealth worms to utilize. 
 
 The Slammer worm (also known as Sapphire) infected the internet on January 25, 2003. 
According to researchers, it infected nearly 90% of all vulnerable machines within 10 minutes and 
achieved its full scanning rate of 55 million scans per second after three minutes [16]. Slammer exploited 
a buffer overflow problem in Microsoft SQL Server or MSDE 2000 on port 1434. This vulnerability was 
discovered nearly six months prior to the outbreak and a patch was released by Microsoft. However many 
systems did not update their systems and were susceptible to the exploit. 
 
 Slammer did not have a malicious payload; in fact, it was only 376 bytes large (404 including the 
packet headers). Since it utilized UDP, rather than TCP, the worm was able to send packets as fast as the 
bandwidth permitted. The worm did not have to initiate the required handshake in TCP. Its method of 
propagation was through random scanning. As seen in figure 2, initially it conformed to RCS trends; but 
as machines were being infected and were attempting to infect the same machines, saturating the network, 
the number of probes per second quickly leveled off. 
 

 
Figure 2: Source: DShield dataset of Slammer probes [16] 
 
 It is important to group similar worms together when they are being researched. To help do so, a 
significant amount of work has been done to classify worms.  Worms can be classified according to two 
different characteristics. The first is the transport mechanism used by the worm to propagate, and the 
second is the method in which the worm is actually launched onto a system. 
  
 There are two known methods of worm transport. The first is through electronic mail.  There are 
two types of e-mail worms: Native and Parasitic. A native email worm is one which is created using the 
native scripting language of the e-mail system being used. A worm of this type is carried in a proprietary 
form when a message is sent. An email worm of this type can exist only on the e-mail system on which it 
was designed to operate and cannot function outside of the designated system. At the time of 
Nachenberg’s publication, there had been no known public native e-mail worms. 



 

  
 The second type of e-mail worm is one which “leverages the transport capabilities of an e-mail 
system to spread itself” [12]. This is known as a parasitic e-mail worm. A worm of this type can exist 
outside of the email platform and simply use the e-mail platform as only one of its methods of spreading. 
Nimda (described earlier) is an example of a parasitic e-mail worm which used five different methods to 
spread itself.   
  
 An arbitrary protocol worm can spread itself using one or more non-email based protocols. For 
example, a worm that uses FTP to transfer itself from host to host would be an arbitrary protocol worm. 
Peer-to-peer worms are also considered arbitrary protocol worms. Fizzer was in arbitrary protocol worm 
which spread itself using the KaZaA peer-to-peer network. Fizzer can also be categorized as a parasitic e-
mail worm since it uses Microsoft Outlook as another method of propagation.  
  
 Aside from worm transport classification, worms are also classified according to the method used 
for their launch. Self-launching worms are capable of spreading to other systems without any human 
interaction. These worms exploit a vulnerability on the victim machine to be launched. For example, 
worms which use a back door to execute are typically self-launching worms. 
  
 User launched worms require human intervention in order to propagate. For example, the Fizzer 
worm required a user to actively open an infected file for the worm to then scan an address book and self 
replicate in the KaZaA shared folder. A combination of user launched and self launching worms is called 
a hybrid launch worm. 
  
 According to Nachenberg, there are three technological trends which are mainly responsible for 
simplicity and feasibility of computer worms:  infrastructural homogeneity, ubiquitous programmability, 
and increasing connectedness via a homogenous communication mechanism    
  
 It is the homogeneity of operating systems and communication protocols that enables worms to 
spread easily. More than 90% of the world uses some flavor of a windows operating system. Also, most 
of the world uses common communication protocols such as SMTP and FTP.  Furthermore, there are 
common applications used that run these protocols. Thus, a worm author needs to simply find 
vulnerabilities in a commonly used operating system (i.e. Windows 9X, NT, XP, 2000 etc), a common 
flaw in a protocol, or vulnerability in a common user application such as Microsoft’s Outlook email client. 
In fact, over 99% of all computer viruses are designed for some Windows platform [12].  
  
 Another enabler of simple worm programming is that of ubiquitous programmability.  For 
example, the macro feature of the Microsoft Office suite allows malware authors to create worms that 
spread from one office document to another in less than 50 lines of code. This is because macros can have 
the capability to copy themselves from one document to another. The danger lies in the fact that macros 
have access to other components of the Windows operating system. Thus, allowing the worm to utilize, 
say, an email client such as Outlook in order to spread itself. Furthermore, Microsoft’s Component Object 
Model (COM) interface makes it easy for worm authors to interface with other Windows programs and 
the rest of the system. Combining macros with COM enables worm authors to create highly powerful 
worms that can manipulate the entire host system. 
  
 Finally, an increased connectedness using homogeneous communications allows worms to spread 
over the internet at an extremely fast rate. Cable connections and Digital Subscriber Lines aid in this 
interconnectivity of the internet. Also, by having a constant connection to the internet, users are able to 
have constantly connected applications running. These applications make great targets for worm authors 
and make worm propagation easier and quicker. 
  



 

 It is important to note that even computer viruses were rudimentary and simplistic at first.  
However, over the years, virus authors have incorporated many tricks into their programs. The same is 
true for computer worms. In other words, six to ten years ago worms were fairly simplistic in nature. It is 
a safe bet to assume that they, too, will follow the evolution of computer viruses and incorporate new 
tricks to defeat security. Nachenberg comments on “second generation worms”. These are worms that are 
difficult to remove, have polymorphic capability, attack antivirus or anti-worm software, or spread on 
wireless systems. Of these second generation characteristics, this paper is mostly concerned with 
polymorphism.   
  
 There are several types of polymorphic changes that can be made within a packet containing 
worm code in order to confuse a worm detecting system. The first uses polymorphic engines within a data 
packet to encrypt worm code with a new and random key before each time it is sent to infect new hosts. 
The second type of polymorphism occurs when padding is used within a packet to hide worm code. If the 
padding is changed between infections then the packet will appear to be different by some percentage. 
This also includes random data insertion to change the overall length of a packet. This random data could 
be extra characters in the padding section or NOPs in the code itself.   
  
 A polymorphic worm is similar to a polymorphic virus. A polymorphic virus is an encrypted 
virus which contains a decrypting routine and a mutation engine. In other words, each time a polymorphic 
virus is loaded, the decrypting routine first decrypts the virus, the virus then executes, and at some point 
in time, the mutation engine creates a new encrypted version of the virus along with a new decrypting 
routine to pass on to other files that are to be infected. Thus, the resulting virus is not only encrypted, but 
also different from the original virus. This makes scanning for the virus difficult since no single signature 
can match the continuously changing sequence of bytes of which the virus is composed. 
  
 The problem is further inflamed by the widely distributed mutation engines. Once an attacker 
creates an efficient engine, it is common for him/her to pass it on to other would-be attackers. There are 
two popular methods for finding polymorphic worms: using Generic Decryption, and using CPU 
heuristics. Both of these methods are useful but have a few shortcomings. Both rely on actually executing 
the virus.   
  
 Generic Decryption uses a virtual machine to test all suspected viruses. It tests to see if the 
executable modifies itself. If it does, it is likely that the self modifications are attributed to the decryption 
stage of the virus. If a virus is found, since it is running in a virtual machine, it cannot cause any damage 
to the system. The problem is that all executables need to be tested on a virtual machine first. This is not 
practical and is not fool proof.   
  
 The heuristic method is similar to Generic Decryption except instead of monitoring the data in 
RAM it monitors the calculations and results that the CPU performs and uses. For example, a 
polymorphic worm may take part in performing many useless calculations from which it uses none of the 
results. It would do this in order to make itself appear as a clean program. In other words, by adding 
useless computation instructions it is trying to add information to its signature that has nothing to do with 
the virus itself. Unfortunately, it is difficult to keep track of the rule set that monitor virus activity 
according to heuristic values. For example, adding x new rules may result in losing the capability to detect 
n previously detectable viruses [22]. 
 
 The worm polymorphism problem is even more difficult to solve because WormDePaCk attempts 
to detect worms at a packet level. Thus, a virtual test environment approach would not work as it did for 
polymorphic viruses.  
 



 

3.  Proposal 
 
 We want to build a system that attempts to analyze every packet for malicious content. If we had 
the computing power, we could open each packet and look for data that we know is malicious. However 
as networks become increasingly fast reaching gigabit speed, it is difficult to examine packets completely. 
The way we attempt to solve this program is to use checksums which represent the content as the means 
to packet inspection. WormDePaCk, Worm Detection through Packet Checksums, uses a series of 
checksums to identify and find similar packets. 
 
 WormDePaCk maintains a database of checksums of packets known to be worms or contain 
worm code. All future incoming packets are checksummed and compared to the database. If the ratio of 
checksum matches is greater than the threshold allowed by the system, an alert is raised and neighboring 
hosts are notified. The system informs them of possible checksums to look for, as well as the suggested 
threshold value. If more packets arrived matching a known worm, the threshold level can increase (with 
increasing confidence) and more checksum values can be sent as “wanted posters.” 
 
 One problem mentioned earlier is worm variants. These will probably create checksums that 
differ from the original version of the worm. WormDePaCk attempts to overcome this problem by 
utilizing overlaps in the checksums. If variants exist, we hope that a majority of the packets will remain 
constant (it could be the actual propagating code). The overlaps ensure that certain parts of the data 
section are processed more than once using different blocks. This is also the reason behind the threshold 
level. 
 
 Related to the threshold is the paranoia level. The paranoia level is inversely related to the 
threshold level. The higher the paranoia level, the more a system believes packets are malicious; therefore, 
the threshold level should be low to alert on minor matches. A benefit of having a paranoia level is a 
possible new use for honeypots. These machines would have their paranoia level set at a high number so 
that it will “detect” more worms and so will scrutinize the packets more carefully. 
 
 WormDePaCk implements some safeguards against attacks. It is possible that a misconfigured 
system wanting to send worms could send bad data to its neighbors. It could set the threshold level at 
100% meaning that the entire packet would have to match to trigger an alert. Then the attacker would 
modify the packets slightly so as to not lose any functionality, but cause the checksums to be slightly 
different. Therefore WormDePaCk does not allow rules that invalidate previously issued signatures or 
cause neighbors to ignore alerting hosts. 
 

4. Related Works 
 
4.1 IDS 

Network intrusion detection systems, or NIDS, monitor packets on the network wire and attempts 
to discover if a hacker/cracker is attempting to break into a system (or cause a denial of service attack) [4]. 
An alternative is a host-based IDS which attempts to discover attacks on a particular system, or host. 
There are two main types of IDSes: anomaly-based IDSes, looking for unusual patterns or behaviors; and 
signature-based (or rule-based) IDSes, finding activities which violate a predefined set of rules. 
 
 
4.2 Symantec-Mantrap 

There is a belief that “knowing is half the battle.” In other words, understanding what attackers do 
will allow us to protect the systems better. Using honeypots, Internet-attached server that act as a decoy, 
luring in potential hackers in order to study their activities and monitor how they are able to break into a 



 

system [8], is one method that is used to gather information about attacks. An alternative approach used 
by Symantec in its ManTrap product is to use cages, which provide attackers with systems that could 
exist in a production system, but does not affect the real network if they are compromised [23].  
 
 When ManTrap is installed in a system, the system administrator is able to include real-world 
information such as employee names, web pages, etc. Further the information and data files are organized 
on the system as on a production system. In fact, an attacker would not be able to distinguish between a 
ManTrap cage and a real system. From the system administrator’s point of view each cage is a 
subdirectory of the host machine, whose root directory has been changed using the chroot command. 
From an attacker’s point of view each cage is a separate machine with its own IP address and 
subdirectories that he/she is able to browse. 
 
 As the attacker peruses the system, ManTrap is logging all the activity. ManTrap attempts to log 
all keystrokes made by the attacker, as well as all processes invoked directly on a shell or called by 
binaries installed by the attacker. The logs are used to try to identify the attacker’s motive and to 
fingerprint an attack to a person. These logs are protected from modification by the attacker. In fact, the 
attacker does not know they exist. 
  
 When an alert is issued ManTrap uses two protocols, SMTP and SNMP. There are four levels of 
alerts: 
 Level 1: Messages sent only if an attacker sends a packet to the network from a cage, opens a new 
session, or causes a process to be run on the host as root 
 
 Level 2: Messages sent in situations that indicate a possible security compromise, such as a cage 
receiving a packet, a process is executed, or keystrokes are recorded 
 
 Level 3: Messages sent when the cage experiences any traffic 
 
 Level 4: User customizable alerts 
 
4.3 Thumbprinting 
 Since the goal of this project is to detect worms on a packet by packet level, designing an 
algorithm to create worm signatures is non trivial. The task of creating signatures for worms is 
complicated with the introduction of worm polymorphism and packet fragmentation across links.  
Polymorphism prevents the creation of a single signature to identify a specific worm strain.  Similarly, 
data fragmentation introduces difficulty in matching of a signature for a specific packet to the same data 
which has possibly been fragmented at some router.   
  
 After some time, research unveiled a similar task, tracing remote logins, which faces some of the 
same problems that occur in signature generation. “Thumbprinting” [19, 21] is a method used to trace the 
origin of intruders and was designed by Stuart Staniford at UC Davis in the early 1990s. Thumbprinting 
relies on the fact that the content over an extended connection is the same over all of the links.  Its relation 
to worm signature generation will be addressed shortly, but first, a quick overview of how thumbprinting 
works is required. 
  
 The idea behind thumbprinting is to monitor every link of a network by taking time spliced 
thumbprints of the information traveling across the link. Thus, once an intrusion has been detected, the 
thumbprint on the immediate incoming link is then compared with the thumbprints taken on all 
neighboring links from the adjacent machine. The thumbprint which matches the suspicious one will then 
be followed, and again, the neighboring links of the machine examined will have their thumbprints 
compared to the one in question, and so on until the originating host is found. 
  



 

 To create a thumbprint, a substrate, a vector, and a thumbprinting function are required.  For 
example, if one wanted to determine the number of times “slammer” occurs in a given sequence, one 
would need to define the substrate as [0,1,2,3,4,5,6,7] and the vector as {‘s’,’l’,’a’,’m’,’m’,’e’,’r’}. The 
thumbprinting function would then take a value of 1 on the sequence given by the vector and zero 
otherwise. Similarly, the number of times the character ‘x’ is followed by seven arbitrary characters and 
then a ‘?’ would be represented by the substrate [0,8] and the vector {‘x’,’?’}. The sum of the 
thumbprinting function over a given interval of time would then be considered its thumbprint. It is 
important to note that the results of the thumbprints for consecutive time intervals is additive. This helps 
resolve problems relating to clock skew across networks, packet fragmentation, and bottlenecks in the 
network. 
  
 Determining what function to use is one of the more difficult questions that needs to be resolved.  
Staniford uses principle component analysis to answer this question but is out of the scope of this paper. It 
is suitable for our purposes to simply accept the thumbprinting function as a pattern recognizer using the 
substrate and vector as input.   
  
 Thumbprinting is related to worm signature generation because it addressed many of the same 
problems faced when dealing with worm signature generation and comparison. First, just as 
WormDePaCk has the capability to create several different checksum digests using different algorithms; 
Staniford proposed having several thumbprinting functions to alleviate any discrepancies encountered 
when deciding which link to trace. This type of redundancy in worm signature comparison would help in 
the case where a polymorphic worm was to fool one of the checksum functions. After further study, it was 
determined that this was highly unlikely thus only the CRC32 checksum function was used, as described 
later. 
  
 The main type of intrusion examined by Staniford is that of a remote connection. Thus, all the 
packets in the TCP session contain only one byte of information representing a keystroke. Thumbprinting 
examined the problem of padding packet data with useless information. Unfortunately, Staniford did not 
address a solution to this problem.  Similarly, he did not address the problem of encryption of data at any 
point along the connection chain. WormDePaCk cannot ignore this possibility since polymorphic worms 
will most likely use encryption engines in the near future. Staniford also attempted to use the checksum 
idea but explained why such a solution would fail due to lack of the additive feature and robustness. This 
made creating a thumbprint function for his algorithm a little less complicated. 
  
4.4 Cryptographic Hash Functions 
 Cryptographic hash functions ( BAh →: ) are defined to be functions that have the following 
properties [2]: 

1. For any Ax∈ , )(xh is easy to compute. 

2. For any By∈ , it is computationally infeasible to find Ax∈ such that yxh =)( . 

3. It is computationally infeasible to find x , Ax ∈′ , such that xx ′≠  and )()( xhxh ′≠ . 
 
 Hash functions map messages and data in A to hashes, or checksums, in B. In general the range 
of B is considerably less than the range in A. This means that multiple items in A will map to the same 
item in B. The best cryptographic function tries to evenly distribute the hashes. There are many different 
cryptographic functions that are currently being used. The following are three cryptographic functions 
used to create checksums or message digests: MD5, SHA-1, and CRC32. 
 
4.4.1 MD5 
 MD5 was developed by Professor Ronald L. Rivest of MIT. What it does, to quote the executive 
summary of rfc1321, is:  



 

[The MD5 algorithm] takes as input a message of arbitrary length and produces as output a 128-bit 
"fingerprint" or "message digest" of the input. It is conjectured that it is computationally infeasible to 
produce two messages having the same message digest, or to produce any message having a given pre-
specified target message digest. The MD5 algorithm is intended for digital signature applications, where a 
large file must be "compressed" in a secure manner before being encrypted with a private (secret) key 
under a public-key cryptosystem such as RSA [1, 14]. 
 
 The message digest is calculated as follows [14]: 
 Suppose we have a b-bit message as input written: m0, m1, …, mb-1 

  
1) Pad the message with a single 1 followed by 0s until the length is 64 bits less than a multiple 

of 512. 
2) A 64-bit representation of b is appended to the padded message. Now the message is an exact 

multiple of 512, and is an exact multiple of 16 (32-bit) words. Let M[0, 1, …, N-1] be the 
words, where N is a multiple of 16. 

3) A four-word buffer (A, B, C, D) is used to compute the message digest. The buffer is 
initialized as follows: (in little-endian) 
A: 01  23  45  67 
B: 89  AB  CD  EF 
C: FE DC BA 98 
D: 76 54 32 10 

4) There are four functions defined that take three 32-bit words as inputs to produce one 32-bit 
word 
F(X, Y, Z) = XY v not(X) Z 
G(X, Y, Z) = XZ v Y not(Z) 
H(X, Y, Z) = XY xor Y xor Z 
I(X, Y, Z) = Y xor (X v not(Z)) 
 
Follow the algorithm given in [14] to produce A, B, C, D 

5) Output A, B, C, D (in little-endian) 
  
4.4.2 SHA-1 

SHA is short for Secure Hash Algorithm and is described in the Federal Information Processing 
Standards (FIPS) Publication 180-1 [6]. It is mainly used to create a compressed version of a message or 
data. SHA produces a 160-bit message digest. This digest is then used as the input into the DSA (or 
similar algorithm) to produce a signature. Using the digest is more efficient than using the original 
message because the digest is usually shorter in length and thus is easier to compute the signature. In 
order to verify a message, the recipient uses SHA to compute the digest of the received message, runs it 
through DSA (must be the same algorithm used by the transmitter), and compares the signatures. 

 
The algorithm is defined in [6] and follows similar steps as in MD5. The message is padded in a 

unique way to be a multiple of 512. SHA-1 processes the message in 512-bit blocks. Similar functions 
and constants are defined that are used in the algorithm to compute the digest. 
 
4.4.3 CRC32 

CRC is short for cyclic redundancy checking and is a method of checking for errors in data that 
has been transmitted on a communications link [3]. It appends a few bits to the end of a message and 
sends the extended string. In CRC32, the length of the appended bits is 32. The receiver of the string can 
then perform a calculation which if not zero would indicate that one or more bits of the message is 
corrupted [9]. Matloff cites Peterson and Davie that have said that 32 bits are enought to give a certain 
level of protection against errors in messages that are 12,000 bits in length. 

 



 

The following is how the CRC is computed. The following is taken from [9].  
Let M be the message we wish to send, m bits long. Let C be a divisor string, c bits long. C will 

be fixed, while M (and m) will vary. We must have that: 
 

• m > c-1 
• c > 1 
• The first and last bits in C are 1s 

 
The CRC field will consist of a string R, c-1 bits long. Here is how to generate R, and send the 

message: 
 
1) Append c-1 0s to the right end of M. They are placeholders for the CRC. Call this extended 

string M’. 
2) Divide M’ by C, using mod-2 arithmetic. Call the remainder R. Since we are dividing by a c-

bit quantity, R will be c-1 bits long. 
3) Replace the c-1 appended 0s in M’ by R. Call this new string W. 
4) Send W to the receiver. 

 

5. Implementation 
 
WormDePaCk is implemented as a host-based system for this prototype. Future versions may be 

a combination of host-based and network-based systems, but further research is needed to see its 
feasibility. The current implementation of this project includes a signature generator and a comparator.  
Network connectivity of the scheme will be discussed in future work.  

 
The signature generator is created using C and C++ and uses the mhash library [10] to produce 

the CRC32 checksums of blocks of data. The files checksum.h and checksum.cc can be found in 
Appendices A and B, respectively. The packets are represented as files on the system. The “packet” is 
opened and a CRC32 checksum is computed for each block of data by using the getData() and 
compHash() functions in checksum.cc and objects and methods in the mhash library. The blocksize and 
overlap can either be predefined by a system administrator or can be dynamically modified as 
circumstances change. The checksums are collected in an array to be processed later by the comparator. 

 
The comparator is created using C++ and uses the files in the signature generator and compare.cc 

(Appendix C), QuadratricProbing.h (Appendix D), and QuadraticProbing.cpp (Appendix E). The 
QuadraticProbing files come from Weiss [24] and provide the hash table implementation used as a 
database for the checksums. In addition, the file CPUTimer.h (written by Ted Krovitz for Data Structures 
class and found in Appendix F) is used to compute the CPU time for the comparator program. It will be 
used to estimate the time needed to compute and/or compare the checksums to the database. When the 
comparator module begins, the threshold level is set by the paranoia level. In this implementation 
threshold = 100 – paranoia, and is clamped by 0 and 100. There may be a better relationship between 
threshold and paranoia. The original array of checksums is entered into the database by using the 
hashtable.insert() function of the QuadraticProbing hash class. Then CPU time is reset and the array of 
checksums of the packet to be compared is searched in the database using the hashtable.find() function. If 
a match is found, a variable is incremented. At the end of the array, the ratio of checksum matches to 
original number of packets. If the ratio is bigger than threshold, then a rule is generated and would be 
sent to other systems. At the same time, the computation time is displayed. 

 



 

6. Results, limitations, and future work 
 
 In general, the idea of using overlapping checksums to determine variations in packet data seems 
sound but it relies on a few assumptions. First, the algorithms and data structures used are rather 
rudimentary. Hashing, storing, and comparing large amounts of signatures require a lot overhead. It is 
assumed that this implementation of WormDePaCk can be easily adapted to run efficiently and without 
much overhead on standard modern day desktops, servers, etc. At this point in time, the algorithm is 
being designed to run on machines which contain roughly one thousand times the computing power of 
regular desktops. However, if this scheme is to be successful it is important that it be able to run on the 
average personal computer. To do so, future versions of the program should utilize better storage and 
comparison algorithms.  Also, in order to help alleviate some of the computational overhead required, it is 
interesting to look at the possibility of having smart network interface cards (NICs) which could perform 
many of these calculations ahead of time.   
 
 Second, it is important to realize that this is not a tool used to discover new worms WormDePaCk 
is designed to work in conjunction with some other method of discovering worm activity. Thus, the 
effectiveness of this scheme is highly reliant on having an initial notification of worm activity. This 
notification can simply come from a machine that has already been compromised. Backtracking activity 
could uncover what caused the compromise and then use that information to generate a signature. Again, 
there is a lot of “wishful thinking” and generalization of hypothetical situations but if preventing worms 
from spreading was a simple and easily implemented task, this paper would simply be a survey on the 
methods of doing so.   
 
 The results obtained from the current version of WormDePaCk simply reflect the performance 
capabilities of the checksumming scheme and comparator as described above. The first step toward 
developing an efficient signature system was to decide on a signature generating function. As stated 
earlier, CRC32 was chosen because of its small digest size and its accuracy. Second, tests were run to 
determine a block and overlap size such that the total size of the signature is not too large yet the 
signature still yields a somewhat fine granularity when determining the modified bytes of the data packet. 
To perform the test, several files were created of arbitrary sizes. Then the data of each of the files was 
slightly manipulated to represent a different packet which contains mostly similar data to that of the 
suspicious file.   
 
 The files were then analyzed using the code written in chks.c (source found in Appendix G) and 
the PERL script bufftest.pl (source found in Appendix H).  The output was a table representing possible 
block sizes of five to forty in increments of five. This data can be found in Appendix I. In addition, each 
block size was tested with an overlap which ranged from zero to just under one half of the current block 
size used. These tables were then analyzed to determine which block size and overlap combination 
yielded a good indication of data being changed yet at the same time did not require an extremely large 
signature. Of course using a block size of five with zero overlap would give the best indication of which 
bytes of data differ from the original file but the signature size of this combination is simply too large to 
be practical in future use. A scan of the table for a percentage change that is small combined with an 
overall signature size which is not too large reveals that using a block size of thirty with an overlap of ten 
is a good choice. Of course each file tested is different, but on average this was a good choice.   
 
 Tests were also run to determine the amount of computation time required to perform signature 
database checks. However, the amount of test data used is far less than that what would be necessary to 
form a complete worm signature database. This prototype utilized files that were 2724 bytes in size. The 
blocksize is set to 30 bytes with an overlap of 10 bytes, as explain earlier. With full debugging enabled 
which displays all work along the way, the time to compute is 0.02 seconds. Future work on this project 
includes creating a true signature database, possibly using actual worm packets. Also, this very basic 



 

implementation of our protocol does not employ host communication. It is planned that future versions of 
the project will be capable of exchanging new signature entries and performing self database updates.   
   
 One main limitation faced when using checksums in this scheme is that of discrepancies found 
when data is inserted into a packet. In other words, if a signature was formed for the sentence: 
  
 1) A boy took his dog for a walk in the park on a sunny afternoon. 
 
Our scheme would be able to detect changes such as character replacement as follows: 
  
 2) A b0y t093&%dog for a walk in the ~8m on a sunny afternoon. 
 
But would require more computational complexity if the changes included the addition of random 
padding such as: 
 
 3) 1234A boy took his dog for a walk in the park on a sunny afternoon. 
 
This results from starting the checksum blocks at the first character in the initial unaltered sequence. For 
example, if the block size was ten then “A boy took” would be in the first block of the signature. But the 
first block for the signature of 3) would include “1234A boy “. This throws off the entire array of 
checksum digests resulting from the signature generation for 3). Thus, to fix this for a signature scheme 
using a block size of n, there would need to be n different signatures generated. The first signature would 
discard zero characters from the front of the input before calculation, the second would discard one 
character, the third would discard two, etc. This complicates the entire algorithm and needs to be 
remedied in the future.   
  
 Other future work includes utilizing special locality of matched signature blocks along with the 
total percentage of matched blocks to determine whether or not a packet is malicious. In other words, 
certain blocks of the signature, such as those pertaining to a buffer overflow, would be flagged as critical.  
Thus a matching of a critical block influences the total likelihood of witnessing a malicious packet. Work 
is also being done to determine the presence of machine code within the data portion of packets. This has 
also proven to be a difficult problem to solve.   
 

7.  Conclusion  
 
 This paper would not be complete without mentioning the recent announcement of a malware 
writing course offered for fall of 2003 at the University of Calgary which, among other types of malware, 
teaches students how to make worms. Of course, the class is for educational purposes regarding computer 
security but the fact that this course exists is a testament to the prevalence of worms and viruses.   
  
 Although the problem of worm propagation will not be solved easily, it is important to explore 
different and creative methods to stop worms from infecting other machines. It seems simple to design a 
worm intrusion detection system when computational power is great such as that provided by the Cloud 
Shield machines. However, designing a scheme that will run efficiently without excessive overhead on 
modern day desktops complicates the matter. To make WormDePaCk work effectively, it is important to 
find the right combination of checksum algorithms, communication protocol, hardware integration, etc. 
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Appendix A: checksum.h 
 
/* 
 * checksum.h 
 *  
 * Programmed by: Bani Shahbaz, Raymond Centeno 
 * 
 * Contains function declarations and constants used by hashing functions 
 * 
*/ 
#ifndef CHECKSUM_H 
#define CHECKSUM_H 
 
#include <stdio.h> 
#include <string.h> 
#include <mhash.h> 
#include <stdlib.h> 
 
 
#define NUM_HASHES_USED 3 
 
/*BUFFER SIZE AND OVERLAP CAN BE CHANGED DEPENDING ON GRANULARITY DESIRED*/ 
#define BUFFSIZE 20 
#define OVERLAP 4 
 
enum H_TYPE { MD5, SHA1, CRC32 };  /* THIS ENUMERATION IS USED FOR INDEXING 
THE HASH_ENABLE ARRAY */ 
 
 
int getData(FILE *fp, char buffer[BUFFSIZE], MHASH hash1, unsigned char 
hashDigest[][128], short hash_enable[NUM_HASHES_USED], int overlap); 
void callHash(short hash_enable[], unsigned char hash[][128], MHASH hash_1, 
char buffer[], int index); 
void printHash(unsigned char hash[], hashid hashType); 
void printShortHash(unsigned char hash[], hashid hashType); 
void compHash(unsigned char hash[], MHASH hash_1, char buffer[], hashid 
hashtype); 
int checksumToInt(unsigned char hash[], hashid hashType); 
 
#endif 
 



 

Appendix B: checksum.cc 
 
/* 
 * checksum.cc 
 *  
 * Programmed by: Bani Shahbaz, Raymond Centeno 
 * 
 * Contains functions used by hashing functions 
 * 
*/ 
 
#include "checksum.h" 
#include <stdio.h> 
#include <string.h> 
#include <mhash.h> 
#include <stdlib.h> 
 
 
/* 
 * getData processes the "packet" by dividing the data in BUFFSIZE segments, 
calls callHash to compute 
 * the CRC32 checksum, and clears the buffer variable. Rewinds the file 
pointer if overlap is greater 
 * than 0. 
 * 
 * Inputs: file pointer to "packet", buffer, hashing object, var to store 
hashes, var that says which 
 *         algorithm is used, integer amount of overlap 
 * Output: number of hashes computed 
*/ 
int getData(FILE *fp, char buffer[BUFFSIZE], MHASH hash1, unsigned char 
hashDigest[][128], short hash_enable[NUM_HASHES_USED], int overlap) 
{ 
 int count=BUFFSIZE; 
 int index=0; 
 
 while(count == BUFFSIZE){ 
 count = fread(buffer, sizeof(char), BUFFSIZE, fp); 
  
 // use overlaps to find packets that are offset 
 fseek(fp, (-1)*overlap, SEEK_CUR); 
  
 callHash(hash_enable, hashDigest, hash1, buffer, index); 
 bzero(buffer, BUFFSIZE*sizeof(char)); 
 index++; 
 } 
 
 return index; 
} 
 
 
/* 
 * getData processes the "packet" by dividing the data in BUFFSIZE segments, 
calls callHash to compute 
 * the CRC32 checksum, and clears the buffer variable. Rewinds the file 
pointer if overlap is greater 
 * than 0. 



 

 * 
 * Inputs: file pointer to "packet", buffer, hashing object, var to store 
hashes, var that says which 
 *         algorithm is used, integer amount of overlap 
 * Output: none 
*/ 
void callHash(short hash_enable[], unsigned char hash[][128], MHASH hash_1, 
char buffer[], int index) 
{ 
 if(hash_enable[MD5]){  
 bzero(hash[index], sizeof(unsigned char)*128); 
 compHash(hash[index], hash_1, buffer, MHASH_MD5); 
 printHash(hash[index], MHASH_MD5); 
 } 
 
 if(hash_enable[SHA1]){ 
 bzero(hash[index], sizeof(unsigned char)*128); 
 compHash(hash[index], hash_1, buffer, MHASH_SHA1); 
 printHash(hash[index], MHASH_SHA1); 
 } 
 
 if(hash_enable[CRC32]){ 
 bzero(hash[index], sizeof(unsigned char)*128); 
 compHash(hash[index], hash_1, buffer, MHASH_CRC32); 
 //printHash(hash[index], MHASH_CRC32); 
 } 
 
 return; 
} 
 
 
 
/* 
 * getData processes the "packet" by dividing the data in BUFFSIZE segments, 
calls callHash to compute 
 * the CRC32 checksum, and clears the buffer variable. Rewinds the file 
pointer if overlap is greater 
 * than 0. 
 * 
 * precondition: hash contains the digests from the hash performed in the 
most recent compHash. 
 * postcondition: hash digest will be printed to the screen according to the 
number in a digest of type  
 * hashType. 
 * 
 * Inputs: file pointer to "packet", buffer, hashing object, var to store 
hashes, var that says which 
 *         algorithm is used, integer amount of overlap 
 * Output: none 
*/ 
void printHash(unsigned char hash[], hashid hashType) 
{ 
 int i; 
 
 switch (hashType){ 
 case MHASH_MD5:  
  printf("\nMD5: "); 
  break; 
 case MHASH_SHA1: 



 

  printf("\nSHA1: "); 
  break; 
 case MHASH_CRC32: 
  printf("\nCRC32: "); 
  break; 
 default: 
  break; 
 } 
 
 printf("\nHASH BLOCK SIZE: %d\n", mhash_get_block_size(hashType)); 
 
 for (i = 0; i < mhash_get_block_size(hashType); i++)  
 { 
  printf("%x", hash[i]); 
        } 
 printf("\n"); 
 
  
} 
 
 
/* 
 * getData processes the "packet" by dividing the data in BUFFSIZE segments, 
calls callHash to compute 
 * the CRC32 checksum, and clears the buffer variable. Rewinds the file 
pointer if overlap is greater 
 * than 0. 
 * 
 * Inputs: file pointer to "packet", buffer, hashing object, var to store 
hashes, var that says which 
 *         algorithm is used, integer amount of overlap 
 * Output: none 
*/ 
void printShortHash(unsigned char hash[], hashid hashType) 
{ 
 int i; 
 
 for (i = 0; i < mhash_get_block_size(hashType); i++) 
 { 
  printf("%x", hash[i]); 
 } 
} 
 
 
/* 
 * getData processes the "packet" by dividing the data in BUFFSIZE segments, 
calls callHash to compute 
 * the CRC32 checksum, and clears the buffer variable. Rewinds the file 
pointer if overlap is greater 
 * than 0. 
 * 
 * precondition: buffer has data to be hashed, hashType is a valid type of 
hashid, hash_1 has been defined, 
 * and hash contains enough space for all the possible digests. 
 * postcondition: hash will contain the digests for the hash of type hashType 
on the data in buffer. 
 * 
 * Inputs: file pointer to "packet", buffer, hashing object, var to store 
hashes, var that says which 



 

 *         algorithm is used, integer amount of overlap 
 * Output: none 
*/ 
void compHash(unsigned char hash[], MHASH hash_1, char buffer[], hashid 
hashType) 
{ 
 hash_1 = mhash_init(hashType); 
 if(hash_1 == MHASH_FAILED) 
 { 
  printf("HASH FAILED\n"); 
  exit(1);  
 } 
 
 mhash(hash_1, buffer, BUFFSIZE*sizeof(char)); 
 mhash_deinit(hash_1, hash); 
 return; 
} 
 
 
/* 
 * getData processes the "packet" by dividing the data in BUFFSIZE segments, 
calls callHash to compute 
 * the CRC32 checksum, and clears the buffer variable. Rewinds the file 
pointer if overlap is greater 
 * than 0. 
 * 
 * Inputs: file pointer to "packet", buffer, hashing object, var to store 
hashes, var that says which 
 *         algorithm is used, integer amount of overlap 
 * Output: number of hashes computed 
*/ 
int checksumToInt(unsigned char hash[], hashid hashType) 
{ 
 int newValue=0; 
  
 for (int i=0; i<mhash_get_block_size(hashType); i++) 
 { 
  newValue= (37*newValue) + (int)hash[i]; 
 } 
 
 printf("hash:%d\n", newValue); 
 return newValue; 
} 
 



 

Appendix C: compare.cc 
 
/* 
 * compare.cc 
 *  
 * Programmed by: Bani Shahbaz, Raymond Centeno 
 * 
 * Contains function declarations and constants used by hashing functions 
 * 
*/ 
 
#include <iostream> 
#include <mhash.h> 
#include <math.h> 
#include "QuadraticProbing.h" 
#include "NetPacket.h" 
#include "checksum.h" 
#include "CPUTimer.h" 
 
#define PARANOIA 50  // paranoia level, integer between 0 and 100 
#define HASHSIZE 50000  // size of initial hash table 
 
using namespace std; 
 
int main(int argc, char *argv[]){ 
 // VARIABLE DECLARATIONS 
 
 // Used by hashing digest 
 MHASH hash1;    // hashing object 
 char charBuffer[BUFFSIZE];  // BUFFSIZE defined in checksum.h 
 unsigned char hashDigest[5000][128]; // collection of hashing 
digests 
 short hash_enable[NUM_HASHES_USED]={0}; // NUM_HASHES_USED defined in 
checksum.h 
 FILE *fp_original, *fp_modified; // FILE pointers 
 
 // Used by CPU timer 
 CPUTimer ct;    // variable used to compute CPU 
time 
 
 // Used by database hash 
 QuadraticHashTable<int> checksumHash(-100, HASHSIZE); 
 int debug=0;    // If debug==1, display debugging 
output 
      // If debug==0, don't display output 
 int paranoia, threshold;  // Parameters used by comparator to 
decide % similarity 
 int foundChecksum=0;   // total # of checksums found in DB 
 int totalChecksum=0;   // total # of checksums in original 
packet 
 int totalChecksumNewPacket=0;  // total # of checksums in the new 
packet 
 int ratio=0;    // foundChecksum/totalChecksum 
 
 // Use CRC32 for the checksums 
 hash_enable[CRC32]=1; 
 



 

 // Zero out the buffer used for the CRC32 hashes 
 // BUFFSIZE defined in checksum.h 
 bzero(charBuffer, BUFFSIZE*sizeof(char)); 
 
 // Process the original packet, overlap is 0 
  // open the packet 
 fp_original = fopen("approx.cc","r"); 
 if(fp_original==NULL){ 
  printf("\nERROR OPENING INPUT FILE\n"); 
  exit(1); 
 } 
  // calculate the checksums 
 totalChecksum=getData(fp_original, charBuffer, hash1, hashDigest, 
hash_enable, 4); 
  
  // insert into hash table  
 for (int i=0; i<totalChecksum; i++){ 
  checksumHash.insert(checksumToInt(hashDigest[i],MHASH_CRC32)); 
  //printHash(hashDigest[i], MHASH_CRC32); 
 } 
 
  // close the packet 
 fclose(fp_original); 
 
 
 // Process the incoming packet to compare with the first packet 
  // open the packet 
 fp_modified = fopen("approx_modified.cc","r"); 
 if(fp_modified==NULL){ 
  printf("\nERROR OPENING INPUT FILE\n"); 
  exit(1); 
 }  
 
  // calculate the checksums 
 totalChecksumNewPacket=getData(fp_modified, charBuffer, hash1, 
hashDigest, hash_enable, 19); 
 
  // close the packet 
 fclose(fp_modified); 
 
 
 // Begin the comparator 
 if(debug) 
  cout << ">> Beginning the comparator module" << endl; 
  
 // Prep work for comparator 
 if (argc==2 && argv[1][0]=='d') 
  debug=1;  
 
 // Set the paranoia level 
 paranoia=PARANOIA; 
 if (paranoia < 0) paranoia=0; 
 if (paranoia > 100) paranoia = 100; 
 threshold=(100-paranoia); 
 
 // Reset the CPU timer 
 ct.reset(); 
 
 if (debug){ 



 

  cout << ">> Using threshold of " << threshold << "%" << endl; 
 } 
 
 // Calculate the checksums and store 
 foundChecksum=0; 
 for (int i=0; i<totalChecksumNewPacket; i++){ 
  if (debug){ 
   cout << ">> " << i << ": Calculated checksum: "; 
   printShortHash(hashDigest[i], MHASH_CRC32); 
   cout << endl; 
  } 
 
  // For each checksum, check the database for a match 
  if (debug){ 
   cout << ">> Checking database for "; 
   printShortHash(hashDigest[i], MHASH_CRC32); 
   cout << endl; 
  } 
  // Match found, inc found var 
  if 
(checksumHash.find(checksumToInt(hashDigest[i],MHASH_CRC32)) != -100){ 
   foundChecksum++; 
   if (debug){ 
    cout << ">> Checksum "; 
    printShortHash(hashDigest[i], MHASH_CRC32); 
    cout << " found\n" << endl; 
   } 
  } 
  // No match found 
  else{ 
   if (debug){ 
    cout << ">> Adding Checksum "; 
    printShortHash(hashDigest[i], MHASH_CRC32); 
    cout << " to database\n" << endl; 
   } 
  } 
 } 
 
 // If percentage > threshold (defined 100-paranoia_level) 
 // output "Packet found" 
 cout << foundChecksum << ":" << totalChecksum << endl; 
 ratio = (int)(((float)foundChecksum/(float)totalChecksum)*100.0); 
 if(debug){ 
  cout << ">> Using threshold of " << threshold << "%" << endl; 
  cout << ">> Ratio calculated: " << ratio << "%" << endl; 
 } 
 
 // Develop rule 
 if (ratio>threshold){ 
  if (debug){ 
   cout << ">> Possible attack packet found. Generating rule." 
<< endl; 
  } 
  cout << ">> RULE: Block on port " << "YYYY" << " for " << "1 min" 
<< endl; 
 } 
 else{ 
  if (debug){ 



 

   cout << ">> Threshold level not met. Packet believed to be 
safe." << endl; 
  } 
 } 
 
 // Display the time used by the CPU in computing the checksums 
 cout << ">> CPU time: " << ct.cur_CPUTime() << endl; 
 
 if (debug){ 
  cout << ">> Ending the comparator module" << endl; 
 } 
 
 return 1; 
} 
 



 

Appendix D: QuadraticProbing.h [24] 
 
        #ifndef _QUADRATIC_PROBING_H_ 
        #define _QUADRATIC_PROBING_H_ 
 
 
        #include "vector.h" 
        #include "mystring.h" 
 
 
 
        // QuadraticProbing Hash table class 
        // 
        // CONSTRUCTION: an initialization for ITEM_NOT_FOUND 
        //               and an approximate initial size or default of 101 
        // 
        // ******************PUBLIC OPERATIONS********************* 
        // void insert( x )       --> Insert x 
        // void remove( x )       --> Remove x 
        // Hashable find( x )     --> Return item that matches x 
        // void makeEmpty( )      --> Remove all items 
        // int hash( String str, int tableSize ) 
        //                        --> Static method to hash strings 
 
        template <class HashedObj> 
        class QuadraticHashTable 
        { 
          public: 
            explicit QuadraticHashTable( const HashedObj & notFound, int size 
= 101 ); 
            QuadraticHashTable( const QuadraticHashTable & rhs ) 
              : ITEM_NOT_FOUND( rhs.ITEM_NOT_FOUND ), 
                array( rhs.array ), currentSize( rhs.currentSize ) { } 
 
            const HashedObj & find( const HashedObj & x ) const; 
 
            void makeEmpty( ); 
            void insert( const HashedObj & x ); 
            void remove( const HashedObj & x ); 
 
            const QuadraticHashTable & operator=( const QuadraticHashTable & 
rhs ); 
 
            enum EntryType { ACTIVE, EMPTY, DELETED }; 
          private: 
            struct HashEntry 
            { 
                HashedObj element; 
                EntryType info; 
 
                HashEntry( const HashedObj & e = HashedObj( ), EntryType i = 
EMPTY ) 
                  : element( e ), info( i ) { } 
            }; 
 
            vector<HashEntry> array; 
            int currentSize; 



 

            const HashedObj ITEM_NOT_FOUND; 
            bool isPrime( int n ) const; 
            int nextPrime( int n ) const; 
            bool isActive( int currentPos ) const; 
            int findPos( const HashedObj & x ) const; 
            int hash( const string & key, int tableSize ) const; 
            int hash( int key, int tableSize ) const; 
     int hash( unsigned char* key, int tableSize ) const; 
            void rehash( ); 
        }; 
 
        #include "QuadraticProbing.cpp" 
        #endif 
 



 

Appendix E: QuadraticProbing.cpp [24] 
 
        #include "QuadraticProbing.h" 
        #include <iostream.h> 
 
        /** 
         * Internal method to test if a positive number is prime. 
         * Not an efficient algorithm. 
         */ 
        template <class HashedObj> 
        bool QuadraticHashTable<HashedObj>::isPrime( int n ) const 
        { 
            if( n == 2 || n == 3 ) 
                return true; 
 
            if( n == 1 || n % 2 == 0 ) 
                return false; 
 
            for( int i = 3; i * i <= n; i += 2 ) 
                if( n % i == 0 ) 
                    return false; 
 
            return true; 
        } 
 
        /** 
         * Internal method to return a prime number at least as large as n. 
         * Assumes n > 0. 
         */ 
        template <class HashedObj> 
        int QuadraticHashTable<HashedObj>::nextPrime( int n ) const 
        { 
            if( n % 2 == 0 ) 
                n++; 
 
            for( ; !isPrime( n ); n += 2 ) 
                ; 
 
            return n; 
        } 
 
        /** 
         * Construct the hash table. 
         */ 
        template <class HashedObj> 
        QuadraticHashTable<HashedObj>::QuadraticHashTable( const HashedObj & 
notFound, int size ) 
          : ITEM_NOT_FOUND( notFound ), array( nextPrime( size ) ) 
        { 
            makeEmpty( ); 
        } 
 
        /** 
         * Insert item x into the hash table. If the item is 
         * already present, then do nothing. 
         */ 
        template <class HashedObj> 



 

        void QuadraticHashTable<HashedObj>::insert( const HashedObj & x ) 
        { 
                // Insert x as active 
            int currentPos = findPos( x ); 
            if( isActive( currentPos ) ) 
                return; 
            array[ currentPos ] = HashEntry( x, ACTIVE ); 
 
                // Rehash; see Section 5.5 
            if( ++currentSize > array.size( ) / 2 ) 
                rehash( ); 
        } 
 
        /** 
         * Expand the hash table. 
         */ 
        template <class HashedObj> 
        void QuadraticHashTable<HashedObj>::rehash( ) 
        { 
            vector<HashEntry> oldArray = array; 
 
                // Create new double-sized, empty table 
            array.resize( nextPrime( 2 * oldArray.size( ) ) ); 
            for( int j = 0; j < array.size( ); j++ ) 
                array[ j ].info = EMPTY; 
 
                // Copy table over 
            currentSize = 0; 
            for( int i = 0; i < oldArray.size( ); i++ ) 
                if( oldArray[ i ].info == ACTIVE ) 
                    insert( oldArray[ i ].element ); 
        } 
 
        /** 
         * Method that performs quadratic probing resolution. 
         * Return the position where the search for x terminates. 
         */ 
        template <class HashedObj> 
        int QuadraticHashTable<HashedObj>::findPos( const HashedObj & x ) 
const 
        { 
/* 1*/      int collisionNum = 0; 
/* 2*/      int currentPos = hash( x, array.size( ) ); 
 
/* 3*/      while( array[ currentPos ].info != EMPTY && 
                   array[ currentPos ].element != x ) 
            { 
/* 4*/          currentPos += 2 * ++collisionNum - 1;  // Compute ith probe 
/* 5*/          if( currentPos >= array.size( ) ) 
/* 6*/              currentPos -= array.size( ); 
            } 
 
/* 7*/      return currentPos; 
        } 
 
 
        /** 
         * Remove item x from the hash table. 
         */ 



 

        template <class HashedObj> 
        void QuadraticHashTable<HashedObj>::remove( const HashedObj & x ) 
        { 
            int currentPos = findPos( x ); 
            if( isActive( currentPos ) ) 
                array[ currentPos ].info = DELETED; 
        } 
 
        /** 
         * Find item x in the hash table. 
         * Return the matching item, or ITEM_NOT_FOUND, if not found. 
         */ 
        template <class HashedObj> 
        const HashedObj & QuadraticHashTable<HashedObj>::find( const 
HashedObj & x ) const 
        { 
            int currentPos = findPos( x ); 
            return isActive( currentPos ) ? array[ currentPos ].element : 
ITEM_NOT_FOUND; 
        } 
 
        /** 
         * Make the hash table logically empty. 
         */ 
        template <class HashedObj> 
        void QuadraticHashTable<HashedObj>::makeEmpty( ) 
        { 
            currentSize = 0; 
            for( int i = 0; i < array.size( ); i++ ) 
                array[ i ].info = EMPTY; 
        } 
 
        /** 
         * Deep copy. 
         */ 
        template <class HashedObj> 
        const QuadraticHashTable<HashedObj> & QuadraticHashTable<HashedObj>:: 
        operator=( const QuadraticHashTable<HashedObj> & rhs ) 
        { 
            if( this != &rhs ) 
            { 
                array = rhs.array; 
                currentSize = rhs.currentSize; 
            } 
            return *this; 
        } 
 
 
        /** 
         * Return true if currentPos exists and is active. 
         */ 
        template <class HashedObj> 
        bool QuadraticHashTable<HashedObj>::isActive( int currentPos ) const 
        { 
            return array[ currentPos ].info == ACTIVE; 
        } 
 
        /** 
         * A hash routine for string objects. 



 

         */ 
        template <class HashedObj> 
        int QuadraticHashTable<HashedObj>::hash( const string & key, int 
tableSize ) const 
        { 
            int hashVal = 0; 
 
            for( int i = 0; i < key.length( ); i++ ) 
                hashVal = 37 * hashVal + key[ i ]; 
 
            hashVal %= tableSize; 
            if( hashVal < 0 ) 
               hashVal += tableSize; 
            return hashVal; 
        } 
 
 
        /** 
         * A hash routine for ints. 
         */ 
         template <class HashedObj> 
        int QuadraticHashTable<HashedObj>::hash( int key, int tableSize ) 
const 
        { 
            if( key < 0 ) key = -key; 
            return key % tableSize; 
        } 
 
 /** 
  * A hash routine for unsigned char* 
  */ 
  template <class HashedObj> 
 int QuadraticHashTable<HashedObj>::hash( unsigned char* key, int 
tableSize ) const 
 { 
     int hashVal = 0; 
  
     for( int i = 0; i < 128; i++ ) 
  hashVal = 37 * hashVal + key[i]; 
 
     hashVal %= tableSize; 
     if( hashVal < 0 ) 
  hashVal += tableSize; 
 
     return hashVal; 
 } 



 

Appendix F: CPUTimer.h 
 
#ifndef CPUTIMER_H 
#define CPUTIMER_H 
 
#include <time.h> 
#include <iostream.h> 
 
// CPUTimer 
// 
// For ECS 110 - UC Davis - By Ted Krovetz 
// 
// This class is a convenient way to count CPU time. 
// The ANSI C function clock() is used to get the current 
// user + system time that the current application 
// (and it's child processes) has expended. 
// At creation, a variable of CPUTimer type records 
// the current value of clock(). 
// 
// reset() - sets the stored variable to the current 
//           value of clock(). In essence, resetting the clock. 
// 
// cur_CPUTime() - returns the difference between the current 
//                 clock() value and the previously stored value. 
//                 In essence, returning how much CPU time has passed. 
// 
// Example: to time a function (possibly main()) 
// 
//   #include "CPUTimer" 
//   void foo(void) { 
//     CPUTimer ct; 
//     ... whatever foo does ... 
//     cerr << ct.cur_CPUTime() << endl; 
//   } 
 
class CPUTimer { 
private: 
  clock_t tick_count; 
     
public: 
  CPUTimer(void); 
  void reset(void); 
  double cur_CPUTime(void); 
}; 
 
// AutoCPUTimer 
// 
// AutoCPUTimer is derived through C++ inheritance. It 
// inherits all the public members of CPUTimer, but 
// includes a destructor which will automatically 
// output the CPU time used to cerr (stderr). 
// Example: to time a function (possibly main()) 
// 
//   #include "CPUTimer" 
//   void foo(void) { 
//     AutoCPUTimer at; 
//     ... whatever foo does ... 



 

//   } 
// 
// This example will have identical output to the 
// previous example, however the output to cerr is 
// done automatically,. 
 
class AutoCPUTimer : public CPUTimer { 
public: 
  ~AutoCPUTimer(void); 
}; 
 
// Implementation -- 
// It is generally not good to expose the mechanics of your ADT 
// In the public interface (i.e. the header file). It is here 
// however, to make program timing as simple as possible. 
// There is _NO_ .cpp file for these classes. #include'ing 
// is sufficient for their use. 
 
CPUTimer::CPUTimer(void) 
{ 
  tick_count = clock(); 
} 
 
void CPUTimer::reset(void) 
{  
  tick_count = clock(); 
} 
 
double CPUTimer::cur_CPUTime(void) 
{ 
  return double(clock() - tick_count) / CLOCKS_PER_SEC; 
} 
 
AutoCPUTimer::~AutoCPUTimer(void) 
{ 
  cerr << cur_CPUTime() << endl; 
} 
 
#endif 
 



 

Appendix G: chks.c 
 
/* USAGE OF THIS FILE 
 * REQUIRES mhash.h  
 *  
 * executable is called checksum 
 * 
 * checksum inputfile [m] [c] [s] [o integer] [b integer] [d] [p] 
 * 
 * m - enable md5 
 * c - enable crc32 
 * s - enable sha1 
 * o - set over lap to integer 
 * b - set buffsize to integer 
 * d - debug option 
 * p - enable polymorphic digests 
 */ 
 
 
 
#include <stdio.h> 
#include <string.h> 
#include <mhash.h> 
#include <stdlib.h> 
 
 
#define NUM_HASHES_USED 3 
 
/*BUFFER SIZE AND OVERLAP CAN BE CHANGED DEPENDING ON GRANULARITY DESIRED*/ 
//#define BUFFSIZE 20 
//#define OVERLAP 6 
 
int BUFFSIZE = 20; 
int OVERLAP = 6; 
 
void checkArgs(int argc, char *argv[], short hash_enable[NUM_HASHES_USED], 
FILE **fp); 
void compHash(unsigned char hash[], MHASH hash_1, char buffer[], hashid 
hashtype); 
void printHash(unsigned char hash[], hashid hashType); 
void callHash(short hash_enable[], unsigned char hash[], MHASH hash_1, char 
buffer[]); 
int getData(FILE *fp, char buffer[BUFFSIZE], MHASH hash1, unsigned char 
hashDigest[128], short hash_enable[NUM_HASHES_USED]); 
 
enum H_TYPE { MD5, SHA1, CRC32 };  /* THIS ENUMERATION IS USED FOR INDEXING 
THE HASH_ENABLE ARRAY */ 
 
 
int DEBUG = 0; /* DEBUG VARIABLE */ 
int POLY_TEST =0; /* CREATE DIGESTS FOR SHIFTED POLYMORPHISM */ 
 
int main(int argc, char *argv[]) 
{ 
 MHASH hash1; 
 char x[BUFFSIZE];  
 unsigned char hashDigest[128]; 
 short hash_enable[NUM_HASHES_USED]={0}; 



 

 FILE *fp; 
 
 checkArgs(argc, argv, hash_enable, &fp); 
  
 bzero(x, BUFFSIZE*sizeof(char)); 
 
 getData(fp, x,hash1, hashDigest,hash_enable); 
  
 printf("\n"); 
 
 return 0; 
} 
 
/* get data gets BUFFSIZE data from file pointer fp, calls callHash to 
determine what hashes it will perform 
 */ 
int getData(FILE *fp, char buffer[BUFFSIZE], MHASH hash1, unsigned char 
hashDigest[128], short hash_enable[NUM_HASHES_USED]) 
{ 
 int count=BUFFSIZE; 
 int i=0; 
 int flag=1; 
  
  
 /*The outer for loop along with the first fread and the rewind are used 
in the case where 
 we want to check for data insertion polymorphism.  More digests are 
made, one for 
 each possible shift, there are BUFFSIZE possible shifts*/ 
 
 for(i=0; i<BUFFSIZE && flag == 1; i++) 
 { 
  
 if(POLY_TEST != 1) flag = 0; 
 if(POLY_TEST == 1) fread(buffer,sizeof(char), i, fp); 
  
 while(count == BUFFSIZE){ 
 count = fread(buffer, sizeof(char), BUFFSIZE, fp); 
  
 fseek(fp, (-1)*OVERLAP, SEEK_CUR); 
 callHash(hash_enable, hashDigest, hash1, buffer); 
 bzero(buffer, BUFFSIZE*sizeof(char)); 
 } 
 
 printf("********\n"); 
 count=BUFFSIZE; 
 if(POLY_TEST == 1) rewind(fp); 
 } 
  
 return count; 
} 
 
 
 
/*NOT VERY ROBUST BUT GETS THE JOB DONE*/ 
void checkArgs(int argc, char *argv[], short hash_enable[NUM_HASHES_USED], 
FILE **fp) 
{ 
 int i; 



 

 
  
 
 *fp = fopen(argv[1], "r"); 
 if(fp==NULL){ 
  printf("\nERROR OPENING INPUT FILE\n"); 
  exit(1); 
 } 
 if(argc > 2){ 
  for(i=2; i<argc; i++) 
  { 
  if(strcmp(argv[i], "m")==0) hash_enable[MD5]=1;  
 //enable md5 
  if(strcmp(argv[i], "s")==0) hash_enable[SHA1]=1; 
 //enable SHA1 
  if(strcmp(argv[i], "c")==0) hash_enable[CRC32]=1; 
 //enable crc32 
  if(strcmp(argv[i], "d")==0) DEBUG = 1;   
 //enable debug 
  if(strcmp(argv[i], "o")==0) OVERLAP = atoi(argv[i+1]); 
 //change overlap size  
  if(strcmp(argv[i], "b")==0) BUFFSIZE = atoi(argv[i+1]); 
 //change buffsize 
  if(strcmp(argv[i], "p")==0) POLY_TEST = 1;  
 //enable polymorphic digest 
  } 
 } 
} 
 
 
/* determines which hashes to compute according to the hash_enable array 
which was 
 * filled out during the argument check 
 */ 
void callHash(short hash_enable[], unsigned char hash[], MHASH hash_1, char 
buffer[]) 
{ 
 if(hash_enable[MD5]){  
 bzero(hash, sizeof(unsigned char)*128); 
 compHash(hash, hash_1, buffer, MHASH_MD5); 
 printHash(hash, MHASH_MD5); 
 } 
 
 if(hash_enable[SHA1]){ 
 bzero(hash, sizeof(unsigned char)*128); 
 compHash(hash, hash_1, buffer, MHASH_SHA1); 
 printHash(hash, MHASH_SHA1); 
 } 
 
 if(hash_enable[CRC32]){ 
 bzero(hash, sizeof(unsigned char)*128); 
 compHash(hash, hash_1, buffer, MHASH_CRC32); 
 printHash(hash, MHASH_CRC32); 
 } 
 
 return; 
} 
 
 



 

 
 
/* 
 precondition: hash contains the digests from the hash performed in the 
most recent compHash. 
 postcondition: hash digest will be printed to the screen according to 
the number in a digest of type hashType. 
*/ 
void printHash(unsigned char hash[], hashid hashType) 
{ 
 int i; 
 
 if(DEBUG){ 
 switch (hashType){ 
 case MHASH_MD5:  
  printf("\nMD5: "); 
  break; 
 case MHASH_SHA1: 
  printf("\nSHA1: "); 
  break; 
 case MHASH_CRC32: 
  printf("\nCRC32: "); 
  break; 
 default: 
  break; 
 } 
 } 
 
 if(DEBUG) {printf("\nHASH BLOCK SIZE: %d\n", 
mhash_get_block_size(hashType));} 
  
 
 for (i = 0; i < mhash_get_block_size(hashType); i++)  
 { 
  printf("%.2x", hash[i]); 
        } 
 printf("\n"); 
 
  
} 
 
/* 
 precondition: buffer has data to be hashed, hashType is a valid type of 
hashid, hash_1 has been defined, 
  and hash contains enough space for all the possible digests. 
 postcondition: hash will contain the digests for the hash of type 
hashType on the data in buffer. 
*/ 
void compHash(unsigned char hash[], MHASH hash_1, char buffer[], hashid 
hashType) 
{ 
 hash_1 = mhash_init(hashType); 
 if(hash_1 == MHASH_FAILED) 
 { 
  printf("HASH FAILED\n"); 
  exit(1);  
 } 
 mhash(hash_1, buffer, BUFFSIZE*sizeof(char)); 
 mhash_deinit(hash_1, hash); 



 

 return; 
} 



 

Appendix H: bufftest.pl 
 
#!/usr/bin/perl -w 
 
# this script is used to compare two data files using a number of different 
block sizes  
# and overlaps in order to determine the optimal combination of the two. 
# the two files are named infile and infile2.   
# first their digests are calculated and placed in output1 and output2 
# then their digests are compared to determine the % difference between the 
two 
# The results of the computation are printed to the file called "results" 
# table1.xls was created using data gotten from this script 
 
 
system("rm -f results"); 
open(RESULTS, ">>results") || die "could not open results: $!"; 
 
 
for($i=5; $i < 55; $i = $i+5) 
{ 
 for($j=0; $j<$i/2; $j=$j+1) 
 { 
  
  $count = 0; 
  $numlines =0; 
  $percent =0; 
  system("./checksum infile c o $j b $i > output1"); 
  system("./checksum infile2 c o $j b $i > output2"); 
 
  open(IN1, "output1") || die "could not open output1: $!"; 
  open(IN2, "output2") || die "could not open output2: $!"; 
 
  while(defined ($check = <IN1>)) 
  { 
   $check2 = <IN2>; 
   chomp ($check); 
   chomp ($check2); 
    
   if($check ne $check2) 
   { 
    $count = $count+1; 
   } 
   $numlines = $numlines +1; 
  } 
   
  if($numlines ne 0){$percent = $count/$numlines;} 
 
  print RESULTS "$i $j $count $numlines $percent\n"; 
   
  close(IN1); 
  close(IN2); 
 } 
} 
 
 



 

Appendix I: table1.xls 
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5 0 23 278 0.0827338 5 0 5 127 0.0393701 5 0 41 13277 0.0030880
5 1 27 347 0.0778098 5 1 7 158 0.0443038 5 1 57 16595 0.0034348
5 2 37 461 0.0802603 5 2 8 209 0.0382775 5 2 74 22126 0.0033445

10 0 15 140 0.1071429 10 0 4 65 0.0615385 10 0 35 6640 0.0052711
10 1 16 156 0.1025641 10 1 6 71 0.0845070 10 1 39 7377 0.0052867
10 2 18 175 0.1028571 10 2 5 80 0.0625000 10 2 46 8299 0.0055428
10 3 21 199 0.1055276 10 3 7 91 0.0769231 10 3 51 9484 0.0053775
10 4 22 232 0.0948276 10 4 9 105 0.0857143 10 4 63 11064 0.0056941
15 0 11 94 0.1170213 15 0 4 44 0.0909091 15 0 33 4427 0.0074543
15 1 11 101 0.1089109 15 1 5 47 0.1063830 15 1 33 4743 0.0069576
15 2 13 108 0.1203704 15 2 4 50 0.0800000 15 2 39 5108 0.0076351
15 3 12 117 0.1025641 15 3 5 54 0.0925926 15 3 41 5533 0.0074101
15 4 15 127 0.1181102 15 4 7 59 0.1186441 15 4 41 6036 0.0067926
15 5 17 140 0.1214286 15 5 6 64 0.0937500 15 5 47 6639 0.0070794
15 6 18 155 0.1161290 15 6 8 71 0.1126761 15 6 52 7376 0.0070499
15 7 20 174 0.1149425 15 7 9 79 0.1139241 15 7 61 8298 0.0073512
20 0 10 71 0.1408451 20 0 4 34 0.1176471 20 0 29 3321 0.0087323
20 1 10 75 0.1333333 20 1 5 35 0.1428571 20 1 34 3496 0.0097254
20 2 10 79 0.1265823 20 2 4 37 0.1081081 20 2 37 3690 0.0100271
20 3 9 83 0.1084337 20 3 5 39 0.1282051 20 3 33 3907 0.0084464
20 4 12 88 0.1363636 20 4 5 41 0.1219512 20 4 37 4150 0.0089157
20 5 14 94 0.1489362 20 5 6 44 0.1363636 20 5 42 4427 0.0094872
20 6 13 101 0.1287129 20 6 8 46 0.1739130 20 6 43 4743 0.0090660
20 7 13 108 0.1203704 20 7 5 50 0.1000000 20 7 51 5107 0.0099863
20 8 15 117 0.1282051 20 8 7 54 0.1296296 20 8 53 5533 0.0095789
20 9 17 127 0.1338583 20 9 7 58 0.1206897 20 9 56 6035 0.0092792
25 0 8 58 0.1379310 25 0 4 27 0.1481481 25 0 28 2657 0.0105382
25 1 8 60 0.1333333 25 1 4 28 0.1428571 25 1 33 2768 0.0119220
25 2 9 62 0.1451613 25 2 5 29 0.1724138 25 2 34 2888 0.0117729
25 3 9 65 0.1384615 25 3 4 31 0.1290323 25 3 29 3019 0.0096058
25 4 9 68 0.1323529 25 4 5 32 0.1562500 25 4 37 3163 0.0116978
25 5 10 71 0.1408451 25 5 5 33 0.1515152 25 5 36 3321 0.0108401
25 6 10 75 0.1333333 25 6 6 35 0.1714286 25 6 42 3495 0.0120172
25 7 10 79 0.1265823 25 7 6 37 0.1621622 25 7 43 3689 0.0116563
25 8 11 83 0.1325301 25 8 6 39 0.1538462 25 8 40 3906 0.0102407
25 9 12 88 0.1363636 25 9 5 41 0.1219512 25 9 47 4150 0.0113253
25 10 14 94 0.1489362 25 10 6 43 0.1395349 25 10 47 4427 0.0106167
25 11 14 100 0.1400000 25 11 8 46 0.1739130 25 11 54 4743 0.0113852
25 12 17 108 0.1574074 25 12 8 49 0.1632653 25 12 54 5107 0.0105737
30 0 7 48 0.1458333 30 0 4 23 0.1739130 30 0 31 2215 0.0139955
30 1 8 50 0.1600000 30 1 4 24 0.1666667 30 1 29 2291 0.0126582
30 2 9 52 0.1730769 30 2 5 25 0.2000000 30 2 30 2373 0.0126422
30 3 8 53 0.1509434 30 3 4 25 0.1600000 30 3 32 2461 0.0130028
30 4 8 55 0.1454545 30 4 4 26 0.1538462 30 4 34 2555 0.0133072
30 5 8 57 0.1403509 30 5 8 27 0.2962963 30 5 34 2657 0.0127964
30 6 8 60 0.1333333 30 6 6 28 0.2142857 30 6 38 2768 0.0137283
30 7 9 62 0.1451613 30 7 7 29 0.2413793 30 7 37 2888 0.0128116
30 8 11 65 0.1692308 30 8 4 30 0.1333333 30 8 37 3019 0.0122557
30 9 11 68 0.1617647 30 9 5 32 0.1562500 30 9 42 3163 0.0132785
30 10 11 71 0.1549296 30 10 5 33 0.1515152 30 10 44 3321 0.0132490
30 11 11 74 0.1486486 30 11 7 35 0.2000000 30 11 47 3495 0.0134478
30 12 11 78 0.1410256 30 12 8 36 0.2222222 30 12 50 3689 0.0135538
30 13 12 83 0.1445783 30 13 7 38 0.1842105 30 13 49 3906 0.0125448
30 14 13 88 0.1477273 30 14 7 40 0.1750000 30 14 54 4150 0.0130120
35 0 8 42 0.1904762 35 0 4 20 0.2000000 35 0 30 1899 0.0157978
35 1 6 43 0.1395349 35 1 5 21 0.2380952 35 1 29 1955 0.0148338
35 2 7 44 0.1590909 35 2 4 21 0.1904762 35 2 26 2014 0.0129096
35 3 7 45 0.1555556 35 3 5 22 0.2272727 35 3 29 2077 0.0139624
35 4 9 47 0.1914894 35 4 4 22 0.1818182 35 4 36 2143 0.0167989
35 5 9 48 0.1875000 35 5 5 23 0.2173913 35 5 35 2215 0.0158014
35 6 9 50 0.1800000 35 6 4 24 0.1666667 35 6 34 2291 0.0148407
35 7 9 51 0.1764706 35 7 6 24 0.2500000 35 7 34 2373 0.0143279
35 8 9 53 0.1698113 35 8 4 25 0.1600000 35 8 37 2460 0.0150407
35 9 9 55 0.1636364 35 9 6 26 0.2307692 35 9 42 2555 0.0164384
35 10 10 57 0.1754386 35 10 8 27 0.2962963 35 10 38 2657 0.0143018
35 11 9 59 0.1525424 35 11 6 28 0.2142857 35 11 41 2768 0.0148121
35 12 10 62 0.1612903 35 12 7 29 0.2413793 35 12 41 2888 0.0141967
35 13 12 65 0.1846154 35 13 7 30 0.2333333 35 13 42 3019 0.0139119
35 14 12 67 0.1791045 35 14 6 31 0.1935484 35 14 49 3162 0.0154965
35 15 13 71 0.1830986 35 15 6 33 0.1818182 35 15 48 3320 0.0144578
35 16 12 74 0.1621622 35 16 7 34 0.2058824 35 16 55 3495 0.0157368
35 17 13 78 0.1666667 35 17 8 36 0.2222222 35 17 56 3689 0.0151803
40 0 6 37 0.1621622 40 0 4 18 0.2222222 40 0 26 1662 0.0156438
40 1 7 38 0.1842105 40 1 4 18 0.2222222 40 1 30 1704 0.0176056
40 2 7 39 0.1794872 40 2 5 19 0.2631579 40 2 29 1749 0.0165809
40 3 6 40 0.1500000 40 3 5 19 0.2631579 40 3 35 1796 0.0194878
40 4 7 41 0.1707317 40 4 6 20 0.3000000 40 4 32 1846 0.0173348
40 5 8 42 0.1904762 40 5 4 20 0.2000000 40 5 34 1899 0.0179042
40 6 7 43 0.1627907 40 6 5 21 0.2380952 40 6 32 1954 0.0163767
40 7 7 44 0.1590909 40 7 4 21 0.1904762 40 7 31 2014 0.0153923
40 8 8 45 0.1777778 40 8 5 22 0.2272727 40 8 33 2076 0.0158960
40 9 9 47 0.1914894 40 9 5 22 0.2272727 40 9 36 2143 0.0167989
40 10 9 48 0.1875000 40 10 5 23 0.2173913 40 10 37 2215 0.0167043
40 11 9 50 0.1800000 40 11 4 24 0.1666667 40 11 40 2291 0.0174596
40 12 10 51 0.1960784 40 12 6 24 0.2500000 40 12 38 2372 0.0160202
40 13 9 53 0.1698113 40 13 6 25 0.2400000 40 13 44 2460 0.0178862
40 14 11 55 0.2000000 40 14 6 26 0.2307692 40 14 44 2555 0.0172211
40 15 11 57 0.1929825 40 15 8 27 0.2962963 40 15 46 2657 0.0173128
40 16 9 59 0.1525424 40 16 7 28 0.2500000 40 16 48 2767 0.0173473
40 17 12 62 0.1935484 40 17 8 29 0.2758621 40 17 48 2887 0.0166263
40 18 12 64 0.1875000 40 18 8 30 0.2666667 40 18 48 3019 0.0158993
40 19 13 67 0.1940299 40 19 8 31 0.2580645 40 19 53 3162 0.0167615  


